飞行员航空知识手册为飞行员提供了非常重要的基础知识。本手册为飞行员介绍了在将来的培训进程中需要的广泛知识。除了和民用航空有关的联邦法规全书(CFR)部分内容外,大部分适用于飞行员认证的知识领域都有讲述。这本手册对于飞行学员和那些需要更多高级证书的飞行员都非常有用。
螺旋桨基本原理
飞机螺旋桨由两个或者多个桨叶以及一个中轴组成,桨叶安装在中轴上。飞机螺旋桨的每一个桨叶基本上是一个旋转翼。由于他们的结构,螺旋桨叶类似机翼产生拉动或者推动飞机的力。
旋转螺旋桨叶的动力来自引擎。引擎使得螺旋桨叶在空气中高速转动,螺旋桨把引擎的旋转动力转换成前向推力。
空气中飞机的移动产生和它的运动方向相反的阻力。所以,飞机要飞行的话,就必须由力作用于飞机且等于阻力,而方向向前。这个力称为推力。
典型螺旋桨叶的横截面如图 3-26。桨叶的横界面可以和机翼的横截面对比。一种桨叶的表面是拱形的或者弯曲的,类似于飞机机翼的上表面,而其他表面类似机翼的下表面是平的。弦线是一条划过前缘到后缘的假想线。类似机翼,前缘是桨叶的厚的一侧,当螺旋桨旋转时前缘面对气流。
桨叶角一般用度来度量单位,是桨叶弦线和旋转平面的夹角,在沿桨叶特定长度的的特定点测量。因为大多数螺旋桨有一个平的桨叶面,弦线通常从螺旋桨桨叶面开始划。螺旋角和桨叶角不同,但是螺旋角很大程度上由桨叶角确定,这两个术语长交替使用。一个角的变大或者减小也让另一个随之增加或者减小。
当为新飞机选定固定节距螺旋桨时,制造商通常会选择一个螺旋距使得能够有效的工作在预期的巡航速度。然而,不幸运的是,每一个固定距螺旋桨必须妥协,因为他只能在给定的空速和转速组合才高效。飞行时,飞行员是没这个能力去改变这个组合的。
当飞机在地面静止而引擎工作时,或者在起飞的开始阶段缓慢的移动时,螺旋桨效率是很低的,因为螺旋桨受阻止不能全速前进以达到它的最大效率。这时,每一个螺旋桨叶以一定的迎角在空气中旋转,相对于旋转它所需要的功率大小来说产生的推力较少。
为理解螺旋桨的行为,首先考虑它的运动,它是既旋转又向前的。因此,如图 3-27 中显示的螺旋桨力向量,螺旋桨叶的每一部分都向下和向前运动。空气冲击螺旋桨叶的角度就是迎角。这个角度引起的空气偏向导致了在螺旋桨引擎侧的气动压力比大气压力大,所以产生了推力。
桨叶的形状叶产生推力,因为它的弯曲就像机翼的外形。所以,空气流过螺旋桨时,一侧的压力就小于另一侧。如机翼中的情形一样,这产生一个向较低压力方向的反作用力。对于机翼,它的上面气压低,升力是向上的。对于螺旋桨,它是垂直安装的,而不是水平的飞机上,压力降低的区域是螺旋桨的前面,这样推力就是朝前的。按照空气动力学的说法,推力是螺旋桨外形和桨叶迎角的结果。
考虑推力的另外一个方法是螺旋桨应对的空气质量方面。这方面,推力等于它的空气质量,螺旋桨引起的滑流速度越大,飞机速度就越小。产生推力所消耗的功率取决于空气团的运动速度。一般来说,推力大约是扭距的 80%,其他 20%消耗在摩擦阻力和滑移上。对于任何旋转速度,螺旋桨吸收的马力平衡力引擎输出的马力。对螺旋桨的任意一周,螺旋桨处理的空气总量依赖于桨叶角,它确定了螺旋桨推动了多少的空气。所以,桨叶角是一个很好的调整螺旋桨负荷的方法来控制引擎转速。
桨叶角也是一个很好的调整螺旋桨迎角的方法。在横速螺旋桨上,对所有引擎和飞机速度,桨叶角必须可调以提供最大效率迎角。螺旋桨和机翼的升力-阻力曲线,表明最大效率迎角是一个小的值,从 2 到 4 度变化的正值。实际桨叶角必须维持这个随飞机前进速度而变化的小迎角。
为一周旋转和前进速度的效率最好而设计了固定桨距和地面可调节(ground-adjustable)螺旋桨。这些螺旋桨设计用于特定的飞机和引擎配合。螺旋桨可以在起飞,爬升和巡航或高速巡航时提供最大螺旋桨效率。这些条件的任何改变将会导致螺旋桨和引擎效率的降低。由于任何机械的效率是有用的输出功率和实际输出功率的比值,那么螺旋桨效率就是推力功率和制动功率的比值。螺旋桨的效率范围一般是 50%到 87%,和螺旋桨的滑距(Slip)有关。
螺旋桨滑距是螺旋桨的几何节距和有效节距之间的差值。如图 3-28,几何节距是螺旋桨旋转一周应该前进的理论距离;有效节距是螺旋桨旋转一周的实际前进距离。因此,几何的或者理论的节距是基于没有滑动的,但是实际的或者有效的节距包含了螺旋桨在空气中的滑动。
螺旋桨扭曲的原因是螺旋桨叶的外面部分切向速度比中心部分快。如图 3-29,如果桨叶在全部长度上的几何节距相同,在巡航速度上靠近螺旋桨中心的部分会有负迎角而螺旋桨尖部将会失速。在桨叶几何节距范围内的扭曲或者变形让巡航飞行时螺旋桨叶在他的长度上保持相对恒定的迎角工作。换句话说,就是螺旋桨叶的扭曲对应于螺旋桨叶长度上不同速度的部分有合适的迎角,这样就能够让推力在螺旋桨叶长度上的分布相对均衡。
通常 1 度到 4 度能够提供最有效的升力/阻力比,但是固定节距螺旋桨的飞行时迎角可变范围可以从 0 度到 15 度。这个变化是由于相对气流的变化进而导致飞机速度的变化。简而言之,螺旋桨迎角是两个运动的结果:螺旋桨沿其轴的转动和它的前进运动。
然而恒速螺旋桨会在飞行中遇到的大多数情况下自动调节它的桨叶角保持在最大效率。在起飞时,此时要求最大功率和推力,恒速螺旋桨处于低螺旋桨叶角或节距。低桨叶角时迎角小,能够保持和相对风的效率。同时,它使得螺旋桨旋转一周推动的空气质量更小。这样的轻载荷让引擎旋转高转速,能够在一定时间内把最大量的燃油转换成热能。高转速也产生了最大的推力;因为,尽管每旋转一周推动的空气质量变小了,但是每分钟的旋转次数大大增加了,推动的气流运动速度变高了,在飞机低速时,推力是最大的。
升空后,随着飞机速度的增加,恒速螺旋桨自动改变到更高的迎角(或节距)。较高的桨叶角再次保持小迎角且对相对风保持较好的效率。较高的桨叶角增加了每周旋转推动的空气质量。这降低了引擎的转速,减少了燃油消耗和引擎磨损,且保持推力在最大。
在起飞后,可控螺旋桨节距的飞机建立了稳定爬升,飞行员把引擎的输出功率降低到爬升功率,方法是首先降低歧管压力(manifold pressure)然后降低桨叶角来降低转速。
在巡航高度,当飞机处于水平飞行时,需要的功率比起飞和爬升时更低,飞行员再次通过降低歧管压力的方法降低引擎功率和增加桨叶角来降低转速。再次的,这提供了扭矩要求以匹配降低的引擎功率;因为,尽管螺旋桨每转处理的空气质量更大了,更多的是通过降低气流速度和增加空速来弥补的。迎角仍然小,因为桨叶角已经随空速的增加而增加。
扭矩和 P 因子
对于飞行员来说,“扭矩”(飞机的向左旋转趋势)是由四个因素构成的,他们导致或者产生至少围绕飞机三个轴向之一的扭曲或者旋转运动。这四个因素是:
1. 来自引擎或者螺旋桨的扭矩反作用
2. 螺旋桨气流的螺旋运动效应
3. 螺旋桨的回转作用(陀螺效应)
4. 螺旋桨的非对称负载(P 因子)
扭矩反作用力
扭矩反作用力涉及到牛顿第三物理定律-对于任何作用力,有一个方向相反但是大小相同的反作用力。应用到飞机上,这就是说内部的引擎部件或者螺旋桨朝一个方向旋转,那么另一个方向相反的大小相等的力试图把飞机朝相反方向旋转。如图 3-30
当飞机在空中飞行时,这个力绕飞机纵轴作用,有让飞机旋转的趋势。为了补偿这个力,一些旧的飞机用一种不好的方式在被强制下降的机翼一侧产生更多的升力。更加现代的飞机的设计是引擎偏移来抵消扭矩的效应。
说明:大多数美国制造的飞机引擎推动螺旋桨旋转从飞行员座位上看是顺时针的。这里讨论的就是指这种引擎。
一般的,补偿因子是永久设定好的,在巡航速度上补偿这个力,因为大多数飞机的工作升力就是在这个速度上。但是,副翼配平片可以在其他速度上进一步调节。
起飞旋转期间飞机的轮子在地面上,扭矩反作用力引起一个额外的绕飞机垂直轴的旋转运动。当飞机的左侧因为扭矩反作用力作用而被强制向下时,左侧的主起落架承受更多的重量。这导致左侧论坛的地面摩擦力或者阻力比右侧更多,这样进一步导致了左转弯运动。这个运动的强度依赖于很多变量。一部分变量是:
· 引擎尺寸和马力
· 螺旋桨尺寸和转速
· 飞机大小(长度,高度,宽度)
· 地面条件
这个起飞阶段的偏航运动是通过飞行员正确的使用方向舵或者方向舵配平而纠正的。
螺旋状气流效应
飞机螺旋桨的高速旋转使螺旋桨引起的气流做螺旋状旋转。在螺旋桨高速转动和低速前进时(如起飞和近进),这个螺旋型旋转的气流非常强劲,在飞机的垂直尾翼面上施加一个强的侧面力。如图 3-31
当这个螺旋状气流冲击垂直翼面的左侧时,它导致飞机绕垂直轴的左转弯运动。螺旋气流越强,这个力就越明显。然而,随前进速度的增加,这个螺旋气流变长,效应也变弱。
螺旋桨引起的螺旋状气流也会导致绕纵轴的滚转运动。
注意到这个由于螺旋气流引起的滚转运动是向右的,而扭矩反作用力引起的旋转是向左的,效果上说是互相抵消的。但是这些力变化非常大,它是由飞行员随时使用飞行控制来适当的纠正的。这些力必须是抵消的,不管哪一个力是否显著。
陀螺效应
在理解螺旋桨的陀螺效应之前,理解基本的陀螺运动原理是必要的。
陀螺仪的所有实际应用都基于陀螺效应的两个基本属性:在空间和进动上的刚度。这里要讨论的就是进动。
进动是一个自旋转子受到作用于轮缘的扰动力的合成作用,或者扰动。从图 3-32可以看到,当作用一个力之后,合成力在旋转方向前面 90 度位置生效。
飞机旋转的螺旋桨是一个很好的陀螺装置,这样它也有类似属性。任何时刻施加一个扰动螺旋桨旋转面的力,合成力位于旋转方向的前面 90 度位置,方向和施加的力是一样的,将导致一个俯仰运动或者偏航运动,或者两种运动的合成,具体依赖于力的作用点。
扭矩效应的这个因素总是和后三点式飞机有关系,也更明显,在尾轮抬起后的飞机起飞摇摆过程中最常发生。如图 3-33。
俯仰角的变化和在螺旋桨飞机的旋转顶部施加一个力有相同的效应。合成力在垂直轴的 90 度位置发生作用,导致飞机向左的偏航运动。这个运动的程度取决于很多变量,其中之一是尾轮抬升后的急转。然而,当一个力作用到转动的螺旋桨的边缘的任何一点,进动或者陀螺效应总会发生;合成力将仍然是在旋转方向上偏离作用点 90 度的位置。根据力的作用位置,会导致飞机左偏航或者右偏航,上仰或者俯冲,或者是俯仰和偏航的结合。
陀螺效应的结果可以这样说,任何绕垂直轴的偏航导致俯仰运动,任何绕横轴的俯仰导致偏航运动。
为纠正陀螺效应的影响,飞行员有必要适当的使用升降舵和方向舵来防止不必要的俯仰和偏航运动。