OCTAL D-TYPE FLIP-FLOP WITH 3-STATE OUTPUTS ## DESCRIPTION The T54LS374/T74LS374 is a high-speed, low-power Octal D-type Flip-Flop featuring separate D-type inputs for each flip-flop and 3-state outputs for oriented applications. A buffered Clock (CP) and Output Enable (OE) are common to all flip-flops. - EDGE-TRIGGERED D-TYPE INPUTS - BUFFERED POSITIVE EDGE-TRIGGERED CLOCK - 3-STATE OUTPUTS FOR BUS ORIENTED APPLICATIONS - HYSTERESIS ON OUTPUT ENABLE INPUT TO IMPROVE NOISE MARGIN - INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS - FULLY TTL AND CMOS COMPATIBLE #### PIN CONNECTION (top view) **DUAL IN LINE** äΕ 1 V_{CC} 20 2 00 19 :8 3 Do 4 О, 16 02 15 8 0, 9 0, 10 GND ГΡ PC-8154 **CHIP CARRIER** 01 □⁵ D, 02 ٥ П 06 02 15 С 05 D₃ 14 🗌 10 11 5855 NC = No Internal Connection #### PIN NAMES | D ₀ -D ₇ | Data Inputs | |--------------------------------|--------------------------------------| | CP | Clock (Active HIGH Going Edge) Input | | ŌĒ | Output Enable (Active LOW) Input | | 00-07 | Outputs | 4/87 # LOGIC SYMBOL AND LOGIC DIAGRAM ### ABSOLUTE MAXIMUM RATINGS | Symbol | Parameter | Value | Unit | | |-----------------|-----------------------------------|-------------|------|--| | V _{CC} | Supply Voltage | - 0.5 to 7 | V | | | Vı | Input Voltage, Applied to Input | - 0.5 to 15 | V | | | Vo | Output Voltage, Applied to Output | -0.5 to 10 | V | | | l _l | Input Current, Into Inputs | -30 to 5 | mA | | | lo lo | Output Current, Into Outputs | 50 | mA | | Stresses in excess of those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ### **GUARANTEED OPERATING RANGES** | | | Tomperature | | | |--------------|--------|-------------|--------|--------------------------------| | Part Numbers | Min | Тур | Max | Temperature - 55°C to + 125°C | | T54LS374D2 | 4.5 V | 5.0 V | 5.5 V | -55°C to +125°C | | T74LS374XX | 4.75 V | 5.0 V | 5.25 V | 0°C to +70°C | XX = package type. #### **TRUTH TABLE** | THO THE TABLE | | | | | | | | | |---------------|----|----|----|--|--|--|--|--| | Dn | СР | ŌĒ | Qn | | | | | | | Н | ı | L | н | | | | | | | L | I | L | L | | | | | | | × | × | Н | Z* | | | | | | H = HIGH Voltage Level L = LOW Voltage Level X = Don't Care Z = HIGH Impedance #### **FUNCTIONAL DESCRIPTION** The LS374 consist of eight edge-triggered flip-flops with individual D-type inputs and 3-state true outputs. The Clock and Output Enable are common. The eight flip-flops will store the state of their individual D inputs that meet the set-up and hold time requirements on the LOW-to-HIGH Clock (CP) transcription. sition. With the Output Enable (\overline{OE}) LOW, the contents of the eight flip-flops are refected on the outputs. When the \overline{OE} is HIGH, the outputs go to the high impedance state. Operation of the OE input does not affect the state of the flip-flops # DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE | Parameter | | Limits | | | Test Conditions | Units | |--|---|---|--|--|--|---------------------------------| | 1 | Parameter | | Min. Typ. Max. | | (Note 1) | | | Input HIGH Voltage | | 2.0 | | Guaranteed input HIGH Voltage for all Inputs | | | | Input LOW Voltage | 54 | | | 0.7 | Guaranteed input LOW Voltage | V | | | 74 | | | 0.8 | for all Inputs | | | Input Clamp Diode Vo | Itage | _ | | - 1.5 | V _{CC} = MIN,I _{IN} = − 18mA | V | | Output HIGH Voltage | 54 | 2.4 | 3.4 | | $I_{OH} = -1.0 \text{mA}$ $V_{CC} = \text{MIN}, V_{IN} = V_{IH} \text{ or}$ | | | | 74 | 2.4 | 3.1 | | I _{OH} = -2.6mA V _{IL} per Truth Table | V | | Output LOW Voltage | 54,74 | | 0.25 | 0.4 | I _{OL} = 12mA V _{CC} = MIN, V _{IN} = V _{IH} or | | | | 74 | | 0.35 | 0.5 | I _{OL} = 24mA V _{IL} per Truth Table | V | | Output Off Current HIGH | | | | 20 | V _{CC} = MAX, V _{OUT} = 2.7V, V _E = 2.0V | μА | | Output Off Current LOW | | | | - 20 | V _{CC} = MAX, V _{OUT} = 0.4V, V _E = 2.0V | μA | | Input HIGH Current Input HIGH Current at MAX Input Voltage | | | | 20 | $V_{CC} = MAX, V_{IN} = 2.7V$ | μA | | | | | | 0.1 | V _{CC} = MAX,V _{IN} = 7.0V | mA | | Input LOW Current | | | | - 0.4 | $V_{CC} = MAX, V_{IN} = 0.4V$ | mA | | Output Short Circuit Current (Note 2) | | - 30 | | - 130 | V _{CC} = MAX, V _{OUT} = 0V | mA | | Power Supply Current
Output Off | | | 27 | 45 | $V_{CC} = MAX, V_{IN} = 0V, V_{E} = 4.5V$ | mA | | | Input LOW Voltage Input Clamp Diode Vo Output HIGH Voltage Output Off Current HIG Output Off Current LO Input HIGH Current Input HIGH Current at Input Voltage Input LOW Current Output Short Circuit C (Note 2) Power Supply Current | Input LOW Voltage Input Clamp Diode Voltage Output HIGH Voltage Output LOW Voltage 54 74 Output LOW Voltage 54,74 74 Output Off Current HIGH Output Off Current LOW Input HIGH Current Input HIGH Current at MAX Input Voltage Input LOW Current Output Short Circuit Current (Note 2) Power Supply Current | Input LOW Voltage Input Clamp Diode Voltage Output HIGH Voltage Output LOW Voltage Output LOW Voltage 54,74 74 Output Off Current HIGH Output Off Current LOW Input HIGH Current Input HIGH Current Input HIGH Current Output Voltage Input LOW Current Output Short Circuit Current (Note 2) Power Supply Current | Input LOW Voltage | Input LOW Voltage | For all Inputs For all Inputs | #### Notes: - 1) Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions - 2) Not more than one output should be shorted at a time. - 3) Typical values are at $V_{CC} = 5.0V$, $T_A = 25$ °C ^{*} Note: Contents of flip-flops unaffected by the state of the Output Enable input (OE) AC CHARACTERISTICS: TA = 25°C | Symbol tplH tpHL | Parameter Propagation Delay, CP to Output | Limits | | | | | | |------------------|--|--------|----------|----------|-----------------|---|-------| | | | Min. | Тур. | Max. | Test Conditions | | Units | | | | | 15
19 | 28
28 | Fig. 1 | | ns | | t _{PZH} | Output Enable Time
to HIGH level | | 20 | 28 | Figs. 3, 4 | C _L = 45pF
R _L = 667Ω | ns | | t _{PZL} | Output Enable Time
to LOW level | | 21 | 28 | Figs. 2, 4 | | ns | | t _{PLZ} | Output Disable Time from LOW level | | 15 | 25 | Figs. 2, 4 | C _L = 5.0pF
R _L = 667Ω | ns | | t _{PHZ} | Output Disable Time from HIGH level | | 12 | 20 | Figs. 3, 4 | | ns | | fMAX | Maximum Input Frequency | 35 | 50 | | Fig. 1 | | MHz | # AC SET-UP REQUIREMENTS: TA = 25°C | Symbol | B | Limits | | | T4 0 | | | |-------------------|---------------------------------------|--------|------|------|-----------------|------------------------|-------| | | Parameter | Min. | Тур. | Max. | Test Conditions | | Units | | t _W CP | Minimum Clock Pulse Width HIGH or LOW | 13 | 10 | | Fig. 1 | | ns | | t _s | Minimum Set-up Time,
Data to CP | 20 | 15 | | | V _{CC} = 5.0V | ns | | t _h | Minimum Hold Time,
Data to CP | 0 | -3 | | | | ns | ## **DEFINITION OF TERMS:** SET-UP TIME (t_s) - is defined as the minimum time required for the correct logic level to be present at the logic input prior to the clock transition from HIGH to LOW in order to be recognized and transferred to the outputs. HOLD TIME (t_h) - is defined as the minimum time following the clock transition from LOW to HIGH that the logic level must be maintained at the input in order to ensure continued recognition. A negative HOLD TIME indicates that the correct logic level may be released prior to the clock transition from LOW to HIGH and still be recognized. # **AC WAVEFORMS AND LOAD CIRCUIT**